Neotibicen tibicen
Common name:
Swamp cicada
Suborder:
Auchenorrhyncha
Order:
Hemiptera
Class:
Insecta
Neotibicen tibicen
Common name:
Swamp cicada
Suborder:
Auchenorrhyncha
Order:
Hemiptera
Class:
Insecta
Neotibicen tibicen
Common name:
Swamp cicada
Suborder:
Auchenorrhyncha
Order:
Hemiptera
Class:
Insecta
Order (Animalia): Hemiptera
Hemiptera /hɛˈmɪptərə/ (Latin hemipterus (“half-winged”)) or true bugs are an order of insects comprising over 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, bed bugs and shield bugs. They range in size from 1 mm (0.04 in) to around 15 cm (6 in), and share a common arrangement of sucking mouthparts. The name "true bugs" is often limited to the suborder Heteroptera. Many insects commonly known as "bugs", especially in American English, belong to other orders; for example, the lovebug is a fly and the May bug and ladybug are beetles.
Most hemipterans feed on plants, using their sucking and piercing mouthparts to extract plant sap. Some are hematophagous, while others are predators that feed on other insects or small invertebrates. They live in a wide variety of habitats, generally terrestrial, though some species are adapted to life in or on the surface of fresh water. Hemipterans are hemimetabolous, with young nymphs that somewhat resemble adults. Many aphids are capable of parthenogenesis, producing young from unfertilized eggs; this helps them to reproduce extremely rapidly in favorable conditions.
Humans have interacted with the Hemiptera for millennia. Some species, including many aphids, are significant agricultural pests, damaging crops by the direct action of sucking sap, but also harming them indirectly by being the vectors of serious viral diseases. Other species have been used for biological control of insect pests. Hemipterans have been cultivated for the extraction of the dyestuff cochineal (also known as carmine) and for shellac. The bed bug is a persistent parasite of humans, and some kissing bugs can transmit Chagas disease. Cicadas have been used as food, and have appeared in literature from the Iliad in Ancient Greece.
Biology
Mouthparts
The defining feature of hemipterans is their "beak" in which the modified mandibles and maxillae form a "stylet" which is sheathed within a modified labium. The stylet is capable of piercing tissues and sucking liquids, while the labium supports it. The stylet contains a channel for the outward movement of saliva and another for the inward movement of liquid food. A salivary pump drives saliva into the prey; a cibarial pump extracts liquid from the prey. Both pumps are powered by substantial dilator muscles in the head. The beak is usually folded under the body when not in use. The diet is typically plant sap, but some hemipterans such as assassin bugs are blood-suckers, and a few are predators.
Both herbivorous and predatory hemipterans inject enzymes to begin digestion extra-orally (before the food is taken into the body). These enzymes include amylase to hydrolyse starch, polygalacturonase to weaken the tough cell walls of plants, and proteinases to break down proteins.
Although the Hemiptera vary widely in their overall form, their mouthparts form a distinctive "rostrum". Other insect orders with mouthparts modified into anything like the rostrum and stylets of the Hemiptera include some Phthiraptera, but for other reasons they generally are easy to recognize as non-hemipteran. Similarly, the mouthparts of Siphonaptera, some Diptera and Thysanoptera superficially resemble the rostrum of the Hemiptera, but on closer inspection the differences are considerable. Aside from the mouthparts, various other insects can be confused with Hemiptera, but they all have biting mandibles and maxillae instead of the rostrum. Examples include cockroaches and psocids, both of which have longer, many-segmented antennae, and some beetles, but these have fully hardened forewings which do not overlap.
Wing structure
The forewings of Hemiptera are either entirely membranous, as in the Sternorrhyncha and Auchenorrhyncha, or partially hardened, as in most Heteroptera. The name "Hemiptera" is from the Greek ἡμι- (hemi; "half") and πτερόν (pteron; "wing"), referring to the forewings of many heteropterans which are hardened near the base, but membranous at the ends. Wings modified in this manner are termed hemelytra (singular: hemelytron), by analogy with the completely hardened elytra of beetles, and occur only in the suborder Heteroptera. In all suborders, the hindwings – if present at all – are entirely membranous and usually shorter than the forewings. The forewings may be held "roofwise" over the body (typical of Sternorrhyncha and Auchenorrhyncha), or held flat on the back, with the ends overlapping (typical of Heteroptera). The antennae in Hemiptera typically consist of four or five segments, although they can still be quite long, and the tarsi of the legs have two or three segments.
Sound production
Many hemipterans can produce sound for communication. The "song" of male cicadas, the loudest of any insect, is produced by tymbal organs on the underside of the abdomen, and is used to attract mates. The tymbals are drumlike disks of cuticle, which are clicked in and out repeatedly, making a sound in the same way as popping the metal lid of a jam jar in and out.
Stridulatory sounds are produced among the aquatic Corixidae and Notonectidae (backswimmers) using tibial combs rubbed across rostral ridges.
Life cycle
Hemipterans are hemimetabolous, meaning that they do not undergo metamorphosis, the complete change of form between a larval phase and an adult phase. Instead, their young are called nymphs, and resemble the adults to a greater or lesser degree. The nymphs moult several times as they grow, and each instar resembles the adult more than the previous one. Wing buds grow in later stage nymphs; the final transformation involves little more than the development of functional wings (if they are present at all) and functioning sexual organs, with no intervening pupal stage as in holometabolous insects.
Many aphids are parthenogenetic during part of the life cycle, such that females can produce unfertilized eggs, which are clones of their mother. All such young are females (thelytoky), so 100% of the population at these times can produce more offspring. Many species of aphid are also viviparous: the young are born live rather than laid as eggs. These adaptations enable aphids to reproduce extremely rapidly when conditions are suitable.
Reference: Wikipedia